Mechanisms That Contribute to a Profound Reduction of the HIV-1 Reservoir After Allogeneic Stem Cell Transplant

Maria Salgado, PhD*; Mi Kwon, MD*; Cristina Gálvez, MS; Jon Badiola, MD; Monique Nijhuis, PhD; Alessandra Bandera, MD, PhD; Pascual Balsalobre, PhD; Pillar Miralles, MD; Ismael Buño, PhD; Carolina Martínez-Laperche, PhD; Cristina Vilaplana, MD, PhD; Manuel Jurado, MD, PhD; Bonaventura Clotet, MD, PhD; Annemarie Wensing, MD; Javier Martínez-Picado, PhD†; and Jose Luis Diez-Martin, MD, PhD‡; for the IciStem Consortium‡

Background: The multifactorial mechanisms associated with radical reductions in HIV-1 reservoirs after allogeneic hematopoietic stem cell transplant (allo-HSCT), including a case of HIV cure, are not fully understood.

Objective: To investigate the mechanism of HIV-1 eradication associated with allo-HSCT.

Design: Nested case series within the IciStem observational cohort.

Setting: Multicenter European study.

Participants: 6 HIV-infected, antiretroviral-treated participants who survived more than 2 years after allo-HSCT with CCR5 wild-type donor cells.

Measurements: HIV DNA analysis, HIV RNA analysis, and quantitative viral outgrowth assay were performed in blood, and HIV DNA was also measured in lymph nodes, ilea, bone marrow, and cerebrospinal fluid. A humanized mouse model was used for in vivo detection of the replication-competent blood cell reservoir. HIV-specific antibodies were measured in plasma.

Results: Analysis of the viral reservoir showed that 5 of 6 participants had full donor chimerism in T cells within the first year after transplant, undetectable proviral HIV DNA in blood and tissue, and undetectable replication-competent virus (<0.006 infectious unit per million cells). The only participant with detectable virus received cord blood stem cells with an antithymocyte globuline-containing conditioning regimen, did not develop graft-versus-host disease, and had delayed complete standard chimerism in T cells (18 months) with mixed ultrasensitive chimera. Adoptive transfer of peripheral CD4+ T cells to immunosuppressed mice resulted in no viral rebound. HIV antibody levels decreased over time, with 1 case of seroconversion.

Limitation: Few participants.

Conclusion: Allo-HSCT resulted in a profound long-term reduction in the HIV reservoir. Such factors as stem cell source, conditioning, and a possible “graft-versus-HIV-reservoir” effect may have contributed. Understanding the mechanisms involved in HIV eradication after allo-HSCT can enable design of new curative strategies.

Primary Funding Source: The Foundation for AIDS Research (amFAR).

Combination antiretroviral therapy (cART) is unable to eliminate HIV-1 infection despite effective viremic control. This is attributable to a persistent latent HIV reservoir, which is responsible for rapid rebound of replication-competent virus after treatment interruption (1). Efforts to develop an effective curative strategy are needed to prevent long-term adverse effects of cART, improve patients’ quality of life, and eradicate the HIV pandemic (2).

Allogeneic hematopoietic stem cell transplant (allo-HSCT) has contributed to the only known case of complete HIV-1 eradication (in the “Berlin patient”). The underlying biological mechanisms are not fully understood, although use of a donor with a homozygous mutation in the HIV coreceptor CCR5 seemed to be key to preventing HIV infection of the graft (3, 4). Other contributing factors may have been the conditioning regimen, which destroyed some or all reservoir T cells; an immunologic milieu favoring T-cell activation and reactivation of latent HIV; greater effectiveness at blocking reactivated virus spread by CCR5-mutated donor cells compared with suppressive ART; and alloreactivity that could have eliminated infected cells in the recipient (5).

However, transplant using CCR5 wild-type donors also leads to a greater reduction in the latent reservoir than is obtained with any other clinical intervention (6–9). For example, despite the delayed viral rebound after interruption of cART that was observed in 2 HIV-infected patients undergoing allo-HSCT from CCR5 wild-type donors (the “Boston patients”) (10), these cases showed that allo-HSCT by itself was able to achieve large reductions in the viral reservoir. Transplant-associated mechanisms that reduce HIV latency and thus may play a role in eliminating the virus need to be understood to allow development of less invasive strategies to eradicate HIV-1 infection that may be applicable to the broader population of HIV-infected persons without hematologic disorders requiring stem cell transplant.
The scant experience with allo-HSCT in HIV-infected patients prevents definitive conclusions (11). To our knowledge, the IciStem Consortium (www.icistem.org) has assembled the largest and most exhaustive observational cohort for the study of HIV reservoir dynamics in HIV-positive persons who have hematologic disease and have undergone allo-HSCT. Its primary objective is to evaluate the mechanisms responsible for the dramatic reduction in HIV reservoirs associated with allo-HSCT.

In this study, we selected patients from the cohort with the longest survival and follow-up (2 years after allo-HSCT). The study extends earlier reports—which involved single or few cases—by examining 6 patients with HIV-1 infection who underwent allo-HSCT from CCR5Δ32 donors and have been extensively studied. We analyzed reductions in HIV latency and viral-specific humoral responses with respect to factors associated with allo-HSCT in the absence of HIV resistance factors, such as CCR5Δ32 mutation.

Methods

Participants

At the time the study was designed, IciStem included 23 HIV-1-infected persons who had viral suppression due to cART and high-risk hematologic disease that required allo-HSCT. Thirteen died within 2 years after transplant. Seven of the remaining 10 patients survived more than 2 years after transplant, 1 of whom had a CCR5Δ32 donor. Therefore, the study included 6 participants (IciS-01, IciS-03, IciS-06, IciS-17, IciS-27, and IciS-28) who had survived more than 2 years after allo-HSCT with CCR5Δ32 wild-type cells, maintained use of cART, and achieved remission of their hematologic disease. All participants provided informed consent. The observational protocol (IciStem study) was approved by the institutional ethical review boards.

Chimerism Analysis

In 4 participants (IciS-01, IciS-03, IciS-06, and IciS-17), analyses were performed in whole bone marrow, peripheral blood, or both. In 3 participants (IciS-01, IciS-03, and IciS-06), T cells and myeloid cells were purified from peripheral blood by immunomagnetic means (autoMACS [Miltenyi Biotec]) using antibodies against CD3+ and CD13/CD33+, respectively. The minimum purity of isolated leukocyte subsets was 95%. In the other 2 participants (IciS-27 and IciS-28), mononuclear lymphocytes and monocytes were isolated, and the minimum purity was also 95%. In all participants, conventional chimerism analysis was performed with polymerase chain reaction of short tandem repeats (STR-PCR). In IciS-01, IciS-03, and IciS-06, when conventional chimerism analysis (with a sensitivity of 1%) was complete, ultrasensitive chimerism analysis in whole peripheral blood was also performed (Mentype DIPscreen and Mentype DiPquant [Biotyper]), with a sensitivity of 0.01% to 0.001%, depending on the quality and quantity of purified DNA. Complete chimerism was defined as the absence of recipient-specific allelic patterns detectable by STR-PCR, with the level of sensitivity mentioned earlier.

Quantification of HIV Reservoir in Blood

HIV DNA in peripheral blood mononuclear cells or bulk CD4+ T cells was repeatedly measured after allo-HSCT in each participant, as previously described (13). Residual viremia (HIV RNA) was also measured from 9 mL of plasma (3). Leukaphereses were obtained from all participants in order to measure the number of infectious units in a large number of CD4+ T cells (range, 11 to 137 × 10^6 CD4+ T cells [Appendix Table, available at Annals.org]) in accordance with previously described protocols (3), with the detection limit set at 0.005 infectious unit per million cells (IUPM).

Quantification of HIV Reservoir in Anatomical Compartments

Per protocol, HIV was measured in tissue biopsy specimens only in participants who had undetectable viral reservoirs in peripheral blood. Target cells for HIV infection were isolated from different tissues to increase sensitivity for viral detection. CD45+ cells were isolated and processed from ileal biopsy specimens using the lamina propria leukocytes viral DNA assay (14). T-follicular helper CD4+ memory T cells, defined as CD3+CD4+CD45RA–PD1+CXCR5+, were sorted by flow cytometry from lymph node biopsy specimens obtained using fine-needle aspiration. Magnetic cell isolation of CD3+ or CD4+ T-cell populations was performed in bone marrow. In all cases, isolated cells were lysed, and viral DNA was quantified by using droplet digital PCR with 2 different sets of primers (14).

Lumbar puncture was performed to obtain 2 to 5 mL of cerebrospinal fluid (CSF), and residual viremia was quantified (3).

Quantification of HIV Antibodies

Specific HIV-1 antibodies in longitudinal plasma samples were measured using a qualitative Western blot assay (New LAV Blot I [Bio-Rad]) and the quantitative standard and low-sensitivity versions of the VITROS anti–HIV-1 assay (Ortho Clinical Diagnostics) (15).

Humanized Mouse Viral Outgrowth Assay

As an in vivo measure of residual replication-competent reservoir cells in blood, we used a humanized mouse model modified to transfer CD4+ T cells instead of total peripheral blood mononuclear cells (16). All procedures were performed according to protocol 8927, which was reviewed by the Animal Experimentation Ethics Committee of the University Hospital Germans Trias i Pujol (registered as B99000005) and approved by the Catalan government according to current national and European Union legislation on the protection of experimental animals. Mice were supervised daily according to a strict protocol to ensure their welfare and were euthanized, if required, with isoflurane (inhalation excess). Briefly, 50 to 250 million purified CD4+ T cells were infused in 5 mice (10 to 50 million per mouse). Whole blood samples were collected every 2 weeks until week 12, when possible. Plasma was used for quantification of HIV RNA using the...
Table: Clinical, Hematologic, and Virologic Characteristics of the 6 Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IciS-01</th>
<th>IciS-03</th>
<th>IciS-06</th>
<th>IciS-17</th>
<th>IciS-27</th>
<th>IciS-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Age, y</td>
<td>34</td>
<td>51</td>
<td>40</td>
<td>46</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>Country of origin</td>
<td>Spain</td>
<td>Spain</td>
<td>Spain</td>
<td>Italy</td>
<td>Spain</td>
<td>Spain</td>
</tr>
</tbody>
</table>

Hematologic characteristics							
Diagnosis	Burkitt NHL (stage IV)	NK-NHL (stage IV)	HL (stage IV)	NHL (DLBCL)	NHL (stage III)	HL (stage III)	
Status at transplant	CR2	CR1	CR2	CR2	CR1	CR3	
Donor type/graft source	Cord blood 7/8 (mismatch in DRB1) + mismatched related PBPC†	HLA-identical sibling/PBPC	HLA-haploidentical sibling/PBPC	HLA-identical sibling/PBPC	HLA-identical sibling/PBPC	HLA-identical unrelated/PBPC	
Donor CCR5 type	CCR5 wt/wt						
Recipient HLA	A*02/02, B*44/51, Cw02/05, DRB1*04/07, DOB1*03/03	A*25/01, B*18/15, Cw12/03, DRB1*13/03, DQB1*06/02	A*02/03, B*44/51, Cw05/07, DRB1*07/04, DQB1*02/03	A*03/24, B*18/51, Cw12/14, DRB1*07/11, DQB1*02/03	A*01/34, B*08/18, Cw07/12, DRB1*01/11, DQB1*03/05	A*26/29, B*44/49, C*07/16, DRB1*01/07, DQB1*02/05	
Donor-recipient HLA match	5/6 (DRB1)†	10/10	6/8 (B*44/57 and DRB1-07/07)	10/10	10/10	10/10	
Conditioning	MAC: FLU, CY, busulfan, and ATG	RIC: FLU and melphalan	RIC: FLU, CY, and busulfan	RIC: Thiopeta, FLU, and CY	RIC: FLU and CY	RIC: FLU and melphalan	
Transplant-associated infections	Escherichia coli, BK virus, hemorrhagic cystitis, None	Clostridium difficile, CMV reactivation (treated with rituximab)	EBV reactivation	None	CMV reactivation		
GvHD prophylaxis	CsA + steroids	CsA + Mtx	Posttransplant CY + CsA + MMF	CsA + Mtx	CsA + Mtx	Tacrolimus + sirolimus	
GvHD	No	Acute: Mild (by month 8), affecting the skin	Acute: Severe (by month 3), affecting the skin and intestines	No	Chronic: Mild (by month 4)	Acute (by day 12, grade II): Affecting the skin and intestines Chronic: Moderate	
Day of neutrophil engraftment	15	18	22	15	11	11	
Day of platelet engraftment	31	9	25	16	11	21	
Time to complete chimerism, mo§	Peripheral blood	2	1	3	1	ND	ND
	T lymphocytes	18	1	3	ND	5.5	1
	Bone marrow	12	6.5	6	ND	ND	ND
Immunosuppression at last follow-up	No	No	No	No	No	No	
Status at last follow-up	Alive with CR						

Virologic characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IciS-01</th>
<th>IciS-03</th>
<th>IciS-06</th>
<th>IciS-17</th>
<th>IciS-27</th>
<th>IciS-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from HIV diagnosis to allo-HSCT, y</td>
<td>1</td>
<td>27</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Time from start of ART to allo-HSCT, y</td>
<td>1</td>
<td>19</td>
<td>2</td>
<td>13</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>HIV tropism</td>
<td>RS</td>
<td>Dual RS/X4</td>
<td>Dual RS/X4</td>
<td>TDF, FTC, RAL</td>
<td>TDF, FTC, RAL</td>
<td>TDF-FTC-DRV/r + RAL</td>
</tr>
<tr>
<td>Posttransplant HIV ART</td>
<td>ABC + 3TC + RAL, maraviroc</td>
<td>TDF, FTC, RAL</td>
<td>TDF, FTC, RAL</td>
<td>TDF-FTC-DRV/r + RAL</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. FTC + TDF + EFV</td>
<td>1. FTC + TDF + RAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. ABC + 3TC + EFV</td>
<td>2. ABC + 3TC + RAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. ABC + 3TC + rilpivirine</td>
<td>3. ABC + 3TC + DTG</td>
</tr>
</tbody>
</table>

Continued on following page
Mechanisms Contributing to Reduction of HIV-1 Reservoir After Allo-HSCT

RESULTS

The 6 patients selected for this study survived more than 2 years after transplant with CCR5 wild-type donor cells. All of them showed complete remission of their hematologic disease, no longer had immunosuppression, and maintained cART during and after transplant; only participant IciS-06 interrupted cART from days 5 to 24 due to severe mucositis, with no evidence of viral rebound. Hematologic and virologic characteristics of the patients are shown in the Table.

Role of the Funding Source

This study was supported by the Foundation for AIDS Research (amfAR) through the amfAR Research Consortium on HIV Eradication (ARCHER) program (grants 108930-56-RGRL, 109293-59-RGRL, and 109552-61-RGRL) as well as Dutch Aidsfonds grants 2013034 and 2016026. Ms. Gálvez was supported by the PhD fellowship of the Spanish Ministry of Education, Culture and Sport (FPU15/03698). The funding sources had no role in the design or conduct of the study or the decision to submit the manuscript for publication.

Statistical Analysis

Given the small number of patients, no statistical analysis was performed.

HIV Reservoir in Blood and Anatomical Compartments

Comprehensive virologic studies were performed in blood and tissue samples from the 6 participants (Figure 1 and Appendix Table). The blood HIV reservoir (proviral HIV DNA analysis and quantitative viral outgrowth assay [qVOA]) in blood cells and HIV RNA analysis in plasma) was undetectable in 5 of 6 participants at the last follow-up. Of note, cell input for both HIV DNA analysis and qVOA was similar to that in previous reports of allo-HSCT and substantially higher than

Table—Continued

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IciS-01</th>
<th>IciS-03</th>
<th>IciS-06</th>
<th>IciS-17</th>
<th>IciS-27</th>
<th>IciS-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma VL before allo-HSCT, HIV-1 RNA copies/mL</td>
<td>65</td>
<td><50</td>
<td><50</td>
<td><40</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>CD4+ T-cell count before allo-HSCT, x 10⁶ cells/L</td>
<td>0.720</td>
<td>0.800</td>
<td>0.151</td>
<td>0.155</td>
<td>0.747</td>
<td>0.891</td>
</tr>
<tr>
<td>CD4+ cell count 3 mo after allo-HSCT, x 10⁶ cells/L</td>
<td>0.410</td>
<td>0.558</td>
<td>0.324</td>
<td>0.320</td>
<td>0.160</td>
<td>0.390</td>
</tr>
<tr>
<td>Maximum CD4+ T-cell count after allo-HSCT, x 10⁶ cells/L</td>
<td>0.891</td>
<td>0.660</td>
<td>0.759</td>
<td>0.773</td>
<td>0.815</td>
<td>2.550</td>
</tr>
<tr>
<td>Detectable plasma VL after allo-HSCT</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

3TC = lamivudine; ABC = abacavir; allo-HSCT = allogeneic hematopoietic stem cell transplant; ART = antiretroviral therapy; ATG = antithymocyte globulin; CMV = cytomegalovirus; CR = complete remission; CsA = cyclosporine A; CY = cyclophosphamide; DLBCL = diffuse large B-cell lymphoma; DRV/r = darunavir + ritonavir; EBV = Epstein-Barr virus; EFV = efavirenz; FLU = fludarabine; FTC = emtricitabine; GvHD = graft-versus-host disease; HL = Hodgkin lymphoma; MAC = myeloablative conditioning; MMF = mycophenolate mofetil; Mtx = methotrexate; ND = no data; NHL = non-Hodgkin lymphoma; NK = natural killer; PBPC = peripheral blood progenitor cell; RAL = raltegravir; RIC = reduced-intensity conditioning; TDF = tenofovir disoproxil fumarate; VL = viral load; wt = wild-type.

† Single cord blood transplant supported with third-party HLA-mismatched CD34+ cells (haplo-cord transplant).
‡ Conventional chimerism (polymerase chain reaction of short tandem repeats).
|| Ultrasensitive VL with limit of detection of 0.5 copy/mL.

Different transplant strategies were used according to the decisions of the participants’ hematologists. IciS-01 received a myeloablative single cord blood transplant supported with third-party HLA-mismatched CD34+ cells (haplo-cord HSCT) (12, 17). IciS-03, IciS-17, and IciS-27 underwent reduced-intensity, conditioned allo-HSCT from HLA-matched related donors. IciS-06 received a reduced-intensity, conditioned, nonmanipulated transplant from an HLA-haploidentical donor, with posttransplant cyclophosphamide for graft-versus-host disease (GvHD) prophylaxis (18). Finally, IciS-28 received a reduced-intensity, conditioned, HLA-matched transplant from an unrelated donor.

All participants achieved complete standard chimerism in peripheral blood and bone marrow in the first 12 months after allo-HSCT (Table). IciS-01 showed delayed achievement of complete T-lymphocyte chimerism (18 months) compared with patients with available data. Data on ultrasensitive chimerism in peripheral blood were available for IciS-01, IciS-03, and IciS-06; only IciS-01 showed mixed chimerism at the last follow-up. Four patients had posttransplant GvHD; 3 of them had acute GvHD, and 2 had chronic GvHD that was treated with immunosuppression (Table).
in other studies (7, 19). Conversely, low virus levels were consistently detected in blood samples from IciS-01 (453 HIV DNA copies per million CD4+ T cells, 3 HIV RNA copies per milliliter of plasma, and 0.13 IUPM [replication-competent virus]).

HIV was also undetectable in CSF and cells from bone marrow, lymph node, and ileal biopsy specimens in all participants, in line with previous observations in blood (Figure 1 and Appendix Table).

Longitudinal Correlation of Hematologic and HIV Reservoir Parameters

Five of 6 participants had undetectable HIV reservoirs (Appendix Figure 2, available at Annals.org). All 5 had peripheral blood progenitor cells as the graft source; 4 developed GvHD; and all 5 achieved complete chimerism in peripheral blood, bone marrow, or T lymphocytes within the first year after transplant. Conversely, the only participant with a detectable HIV reservoir (IciS-01) received a cord blood transplant with a conditioning regimen that contained antithymocyte globulin (ATG). This participant did not develop GvHD and had mixed chimerism in T cells up to posttransplant month 18, as measured by standard methods.

Longitudinal follow-up of IciS-06 is shown in Figure 2. This participant showed mixed chimerism in peripheral blood in the first few weeks after transplant, with concomitant detection of persistent reservoirs. By month 3, the patient developed acute grade III GvHD after withdrawal of immunosuppression coinciding with achievement of full donor chimerism. Coincidentally, residual viremia became undetectable in plasma. Cell-associated HIV DNA was also undetectable at that point, showing a 2-fold reduction in just 4 months. Clinical data suggest that similar phenomena may have occurred in the other 4 patients given that all had full chimerism within 6 months after allo-HSCT and/or GvHD (Table).

HIV-Specific Humoral Response

We explored HIV humoral response dynamics in plasma samples after allo-HSCT (Appendix Figure 3, available at Annals.org). All participants lost the p18 band. We observed no other missing bands in IciS-01; however, IciS-03 and IciS-06 showed decreasing p31 antibody levels, and IciS-06 and IciS-17 lacked p55 and p24 bands. More important, we did not detect any viral antibodies in IciS-28 by month 88, suggesting that this patient experienced seroreversion. Overall, a longer interval after allo-HSCT seemed to be associated with greater antibody clearance among patients receiving cART. These data were confirmed with the low-sensitivity VITROS analysis, which showed decreased levels of HIV antibodies and a progressive loss over time after allo-HSCT (Figure 3). IciS-28 also showed antibody levels close to those of the HIV-negative donors. Overall, the data suggest limited de novo humoral responses that could sustain the HIV-specific immunoglobulin levels in the plasma of these patients.

Humanized Mouse VOA

We transferred large numbers of CD4+ T cells purified from the participants’ peripheral blood to immunosuppressed mice to detect any replication-competent blood cell reservoir (Figure 4, A). As a control, we also transferred cells from an HIV-infected person who had not undergone transplant, was receiving long-term cART, and had a standard HIV reservoir size (1.6 IUPM) (20).

We detected high levels of HIV RNA in the plasma of humanized mice infused with control CD4+ T cells (Figure 4, B). Cell-associated HIV DNA was also de-
ected in blood and spleen cells from the same infected mice (Figure 4, C and D). Conversely, none of the mice infused with cells from the 6 allo-HSCT recipients had detectable virus in plasma or cell-associated HIV DNA in the blood or spleen after 4 to 13 weeks of follow-up. Of note, median survival of the mice was 6 weeks (interquartile range, 5 to 12 weeks). Also, the median of maximum engraftment of human lymphocytes in the mice was 34% (interquartile range, 15% to 45%). Among engrafted human CD4+ T cells, activation levels reached a median of 95% (interquartile range, 80% to 97%), suggesting optimal conditions for eventual HIV reactivation (Appendix Figure 4, available at Annals.org).

Because IciS-01 did not show reactivation, we also tested cells from an HIV-infected person who did not undergo transplant, was receiving cART, and had a similarly small HIV reservoir (0.13 IUPM). HIV DNA (1000 copies per million cells) was detected in the spleen and blood of mice with human cells transferred from this person, proving the robustness of the technique.

This model suggested that immediate viral rebound was not likely after discontinuation of cART in the 6 transplant recipients. Moreover, the virus in IciS-01 might have low inducibility under in vivo physiologic conditions.

DISCUSSION

Previous studies have shown that allo-HSCT can result in a significant reduction in the latent HIV reservoir (6–9) and, in a unique case linked to transplant of CCR5-mutated cells, even eradication of the virus (4, 19), making HIV cure a feasible target. However, the specific mechanisms that contributed to the decline in viral reservoirs in these persons are not fully understood, in part due to scant experience with allo-HSCT in HIV-infected persons. The IciStem consortium provides an opportunity to exhaustively study HIV remission in multiple HIV-infected persons who have undergone allo-HSCT, including the 6 long-term survivors described in this article. Not only have we confirmed the reduction of the HIV reservoir in blood (6, 7), but 5 of 6 participants eliminated any measurable HIV reservoir, as determined by highly sensitive techniques (10 to 100 times more sensitive than those used in previous studies [21]) in lymph nodes, ilea, bone marrow, and CSF.

The only patient who had a detectable reservoir underwent cord blood allo-HSCT with an ATG-containing conditioning regimen, did not develop GvHD, and had longer persistence of recipient cells in the T-cell compartment. All of the other participants, who did not have a detectable reservoir, reached full donor chimerism within a year, and 4 of them developed GvHD, although we cannot confirm that those events converged in time for all of them. Exhaustive follow-up of 1 of the participants with complete viral clearance showed that HIV became undetectable coincidently with achievement of complete donor chimerism and development of GvHD.

These results are in line with those of previous reports, where episodes of GvHD and achievement of complete chimerism also coincided with substantial reductions in the viral reservoir (4, 6, 7, 9). In contrast to the Boston patients, the IciStem participants included in our study were all free of immunosuppression at the last follow-up with T-cell immune reconstitution and had longer posttransplant survival. HIV-specific sero-
reversion at 8 years after transplant in IciS-28 suggests that longer time to remission might contribute to HIV clearance.

We postulate that replacement of recipient hematopoietic cells with donor cells (that is, achievement of complete chimerism in all compartments, with subsequent exertion of alloreactivity by the healthy donor immune system) might be a major factor in HIV remission after allo-HSCT in the setting of CCR5 wild-type donor transplantation, as previously suggested (7). After allo-HSCT, graft-versus-host immune responses against allelic variants of major and minor histocompatibility complex molecules contribute to a graft-versus-leukemia effect that is the basis of the therapeutic effect of allo-HSCT on hematologic disease (22). Similarly, this potent alloreactive immune effect may contribute to eradication of latently HIV-infected recipient cells through a “graft-versus-HIV-reservoir” effect.

Specific transplant-associated characteristics may explain why HIV persisted in IciS-01. For example, the immunosuppressive effect of ATG combined with use of a less mature graft source (cord blood cells) may have moderated the potential graft-versus-HIV-reservoir effect. Delayed immune T-cell reconstitution is the primary drawback of cord blood transplants because of the immature nature of the engrafted cells. In vivo profound T-cell depletion resulting from ATG-containing regimens further intensifies long-lasting impairment of immune reconstitution. Better T-cell recovery with lower incidence of virus reactivation and death from viral infection has been reported in cord blood transplant recipients not receiving ATG (23).

On the other hand, whether the absence of clinically significant GvHD in this setting also played a role is difficult to determine with certainty. Clinically evident GvHD is one of the manifestations of alloreactivity when graft-versus-host immune responses target recipient tissues other than hematopoietic cells, and it occurs frequently after allo-HSCT. Of note, the ability of cord blood cells to exert potent antitumor activity has also been observed with low rates of GvHD (24). However, the long-term persistence of recipient cells in the T-cell compartment in IciS-01 clearly contrasts with the achievement of complete chimerism in the other participants. Evaluation of additional persons without GvHD is needed to better understand the role of GvHD among the other potential factors associated with allogeneic transplant in the eradication of HIV.

Finally, the specific posttransplant immunosuppressive regimen may also play a role in this setting. After infusion of donor hematopoietic cells, posttransplant immunosuppression exerts its inhibitory effects mainly in donor immune cells to prevent severe GvHD. This could have a dual effect in the setting of HIV infection depending on the mechanism of action, dose, and timing. On one hand, it could prevent or modulate alloreactivity against the residual HIV reservoir; on the other hand, it could also limit uninfected T-cell permissiveness for HIV replication, thus maximizing reservoir reduction. Posttransplant high-dose cyclophosphamide
(participant IciS-06), which is commonly used for GvHD prophylaxis in unmanipulated haploidentical donor transplantation, eliminates rapidly proliferating alloreactive T cells of both donor and recipient origin and preserves resting memory T cells, which results in effective prevention of GvHD; this represents a potent graft-versus-leukemia effect together with relatively rapid immune reconstitution (25). Whether this strategy or other classic approaches could also enhance reservoir reduction deserves further investigation. Our series prevents definitive conclusions given the limited number of patients and their differing GvHD prophylaxis schemes. However, the fact that all participants had discontinued immunosuppressive therapy and 5 had an undetectable HIV reservoir at their last assessment suggests a positive effect of immunosuppression withdrawal in preserving alloreactivity against both the underlying hematologic disease and the HIV reservoir. The independent contribution of these factors is difficult to evaluate in the present study, but the results suggest a multifactorial interaction that promotes HIV remission.

We used an in vivo humanized mouse model that has proved highly sensitive in detecting replication-competent reservoir in HIV elite controllers (16). Infusion of CD4\(^+\) T cells from an HIV-infected control patient who had not undergone transplant led to virus reactivation in the plasma within 2 weeks, similar to what has been described elsewhere (26). In contrast, virus reactivation was not observed in mice infused with cells from participants who underwent allo-HSCT. This included IciS-01, who had shown low but detectable levels of replication-competent virus when the ultrasensitive qVOA technique was used. The unusually high numbers of CD4\(^+\) T cells included in our qVOA (16, 27) with strong phytohemagglutinin-mediated stimulation enhanced virus reactivation in these cultures over physiologic conditions in mice. It seems reasonable that in the absence of cART, IciS-01 would have a longer HIV reactivation period than expected because this participant harbored a small replication-competent reservoir. Although we cannot rule out later HIV rebound after interruption of cART for any of the participants because of undetectable reservoir levels (as happened in previous reported cases [6–9]), our data contribute to mimicking of physiologic HIV reactivation dynamics.

Allo-HSCT is indicated for only a small subset of HIV-1–infected persons with underlying hematologic disease because of the high morbidity and mortality associated with the procedure. In those who survive in the long term, exhaustive consecutive studies using highly sensitive techniques could provide important information for better design of efficient, less toxic HIV cure strategies that could apply to the broader HIV-infected population.

In conclusion, our study shows that allo-HSCT yielded a profound long-term reduction in the HIV reservoir, including 1 case of seroreversion, in the CCR5 wild-type donor setting. Several transplant-associated factors may have contributed to this reduction. Further studies are needed to confirm that a graft-versus-HIV-reservoir effect might be key to achieving a sterilizing cure after allo-HSCT in HIV-infected persons. Detailed studies of chimerism dynamics at ultrasensitive levels in different reservoir compartments could further evaluate the elimination of HIV through a graft-versus-HIV-reservoir effect. Studies of monitored antiretroviral pause in selected patients will be needed to determine whether the observed absence of viral rebound in

Figure 4. In vivo mouse viral rebound model.

- **A. In Vivo Mouse Viral Rebound Model**
 - 6 patients receiving cART who had allo-HSCT with CCR5 wt donor cells >2 y prior
 - 1 control patient receiving cART who had not undergone allo-HSCT

- **B. HIV Viremia in Mouse Plasma**
 - Viral reactivation in mouse plasma (HIV RNA)
 - Patient’s cellular engraftment (proportion of human CD45\(^+\) cells)
 - Patient’s CD4\(^+\) T-cell activation (proportion of CD25\(^+\) CD69\(^+\)HLADR\(^+\))
 - Viral reservoir in blood (HIV DNA measured with ddPCR)
 - Viral reservoir in spleen cells (HIV DNA measured with ddPCR)

- **C. Proviral Infection in Mouse Blood Cells**
 - Measurements:
 - Log Copies/ml plasma
 - HIV DNA, log copies per CD4\(^+\) T cell

- **D. Proviral Infection in Mouse Spleen Cells Isolated After Euthanasia**
 - Control
 - IciS-01
 - IciS-03
 - IciS-06
 - IciS-17
 - IciS-27
 - IciS-28

All 6 patients had undetectable values. Limit of detection relative to plasma volume input is shown. Error bars represent medians and interquartile ranges of the values from the 5 mice used for each patient. allo-HSCT = allogeneic hematopoietic stem cell transplant; cART = combination antiretroviral therapy; ddPCR = droplet digital polymerase chain reaction; wt = wild-type.
the humanized mouse model correlates with the in vivo experience.

From IrsiCaixa AIDS Research Institute, Badalona, Spain (M.S.); Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain (M.K., P.B., P.M., I.B., C.M.); IrsiCaixa AIDS Research Institute, Badalona, Spain, and Autonomous University of Barcelona, Barcelona, Spain (C.G.); Virgen de las Nieves University Hospital, Granada, Spain (J.B., M.J.); University Medical Center Utrecht, Utrecht, the Netherlands (M.N., A.W.); San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy (A.B.); Germans Trias i Pujol Research Institute, Badalona, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain, and CIBER Enfermedades Respiratorias, Madrid, Spain (C.V.); IrsiCaixa AIDS Research Institute, Badalona, Spain, and University of Vic - Central University of Catalonia, Vic, Spain (B.C.); IrsiCaixa AIDS Research Institute, Badalona, Spain, University of Vic - Central University of Catalonia, Vic, Spain, and Catalun Instituto for Research and Advanced Studies, Barcelona, Spain (J.M.); and Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, and Complutense University of Madrid, Madrid, Spain (J.L.D.).

Acknowledgment: The authors thank the members of the IciStem Consortium (see the Appendix) for their support and discussion of the results. The authors also thank Jeffrey Laurence for his critical review and helpful comments, as well as Marco A. Fernández Sanmartín from the Flow Cytometry Service of the Institut de Recerca Germans Trias i Pujol; Agüeda Hernández-Rodríguez, Victoria González Soler, and Belén Rivaya Sánchez from the Microbiology Department of the Hospital Universitari Germans Trias i Pujol; and Jorge Diaz Pedroza, Yaiza Salgado, and Pere-Joan Cardona i Iglesias from the Institut de Recerca Germans Trias i Pujol animal facility. Finally, the authors acknowledge Joel Blankson for his help in the development of the mouse VOA protocol.

Grant Support: This study was supported by amfAR through the ARCHE program (grants 108930-56-RGRL, 109293-59-RGRL, and 109552-61-RGRL) and by Dutch Aidsfonds grants 2013034 and 2016026. Ms. Gálvez was supported by the PhD fellowship of the Spanish Ministry of Education, Culture and Sport (FPU15/03698).

Disclosures: Dr. Wensing reports grants and consultancy fees from ViIV Healthcare, Gilead, Janssen, Merck, CLJ1, and Virolology Education outside the submitted work. Authors not named here have disclosed no conflicts of interest. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M18-0759.

Reproducible Research Statement: Study protocol, statistical code, and data set: Specific aspects will be made available to approved persons through written agreements with the principal investigators of the IciStem Consortium (e-mail, jmpicado@irsicaixa.es).

Corresponding Author: Javier Martinez-Picado, PhD, IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain; e-mail, jmpicado@irsicaixa.es.

Current author addresses and author contributions are available at Annals.org.

References

Current Author Addresses: Drs. Salgado, Clotet, and Martinez-Picado and Ms. Gálvez: IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain.
Drs. Kwon, Balsalobre, Buño, Martinez-Laperche, and Diez-Martin: Hematology Department, Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Dr Esquerdo 46, 28007 Madrid, Spain.
Drs. Badiola and Jurado: Virgen de las Nieves University Hospital, Avenida de las Fuerzas Armadas, 2, 18014 Granada, Spain.
Drs. Nijhuis and Wensing: Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
Dr. Bandera: San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi, 33, 20900 Monza, Italy.
Dr. Miralles: Microbiology and Infectious Diseases Department, Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Calle de Méiquez, 7, 28009 Madrid, Spain.
Dr. Vilaplana: Germans Trias i Pujol Research Institute, Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Spain.

Author Contributions: Conception and design: M. Salgado, M. Kwon, M. Nijhuis, P. Balsalobre, B. Clotet, A. Wensing, J. Martinez-Picado, J.L. Diez-Martin.
Drafting of the article: M. Salgado, M. Kwon, P. Balsalobre, J. Martinez-Picado, J.L. Diez-Martin.
Critical revision of the article for important intellectual content: M. Salgado, M. Kwon, J. Badiola, A. Bandera, P. Balsalobre, P. Miralles, I. Buño, C. Martinez-Laperche, B. Clotet, A. Wensing, J. Martinez-Picado, J.L. Diez-Martin.
Obtaining of funding: M. Salgado, M. Nijhuis, P. Balsalobre, B. Clotet, A. Wensing, J. Martinez-Picado.
Administrative, technical, or logistic support: P. Balsalobre.

APPENDIX: MEMBERS OF THE ICISTEM CONSORTIUM

The following members of the IciStem Consortium contributed to the article but did not author it: Asier Sáez-Cirión, Julian Schulze zur Wiesch, Johanna Maria Eberhard, Gero Hütter, Jürgen Kuball, Vanderson Rocha.
IciStem associated collaborators: Jorge Gayoso Cruz, Antonio Muscatello, Alessandro Soria, and Andrea Gori.
IciStem management team: Judith Dalmau, Antoinet van Kessel, and Susanne Loth.
Appendix Table: HIV Latent Reservoir in Blood and Tissues in All Samples Isolated From Each Patient*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Blood</th>
<th>Tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>qVOA in CD4^+ Cells</td>
<td>HIV DNA in CD4^+ Cells</td>
</tr>
<tr>
<td></td>
<td>Cell Input</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td>IUPM</td>
<td>Cells</td>
</tr>
<tr>
<td>IciS-01 Before SCT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Month 29 88 × 10^6 0.034</td>
<td>1 × 10^6</td>
<td>225</td>
</tr>
<tr>
<td>Month 45 63 × 10^6 0.129</td>
<td>1 × 10^6</td>
<td>453</td>
</tr>
<tr>
<td>IciS-03 Month 17 113 × 10^6</td>
<td>Negative (<0.006)</td>
<td>1 × 10^6</td>
</tr>
<tr>
<td>Month 31 112 × 10^6 Negative (<0.004)</td>
<td>1 × 10^6</td>
<td>Negative (<6)</td>
</tr>
<tr>
<td>IciS-06 Before SCT 63 × 10^6 0.130</td>
<td>1 × 10^6</td>
<td>2162</td>
</tr>
<tr>
<td>Month 15 23 × 10^6 Negative (<0.031)</td>
<td>1 × 10^6</td>
<td>Negative (<9)</td>
</tr>
<tr>
<td>Month 27 113 × 10^6 Negative (<0.006)</td>
<td>1 × 10^6</td>
<td>Negative (<2)</td>
</tr>
<tr>
<td>IciS-17 Month 65 11 × 10^6 Negative (<0.031)</td>
<td>1 × 10^6</td>
<td>Negative (<19)</td>
</tr>
<tr>
<td>Month 75 112 × 10^6 Negative (<0.006)</td>
<td>1 × 10^6</td>
<td>Negative (<2)</td>
</tr>
<tr>
<td>IciS-27 Before SCT - - PBMCs 1137</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Month 45 137 × 10^6 Negative (<0.005)</td>
<td>1 × 10^6</td>
<td>Negative (<7)</td>
</tr>
<tr>
<td>IciS-28 Month 88 137 × 10^6 Negative (<0.005)</td>
<td>1 × 10^6</td>
<td>Negative (<8)</td>
</tr>
</tbody>
</table>

CSF = cerebrospinal fluid; IUPM = infectious unit per million cells; LN = lymph node; PBMC = peripheral blood mononuclear cell; qVOA = quantitative viral outgrowth assay; SCT = stem cell transplant; Tfh = T-follicular helper; VL = viral load.

* Limit of detection is shown for negative values.
Appendix Figure 1. Gating strategy to quantify engraftment of human cells (proportion of human CD45+ cells), CD4 (defined as CD3+CD8-) cell activation, and the event of any CD8 or NK contamination.

NK = natural killer.

Appendix Figure 2. Relationship between latency parameters measured in each participant and clinical conditions of each allogeneic stem cell transplant.

<table>
<thead>
<tr>
<th>Patient</th>
<th>HIV Reservoir</th>
<th>Stem Cell Donor</th>
<th>Time to Full Donor Chimera in T Lymphocytes</th>
<th>Graft-Versus-Host Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>IciS-01</td>
<td>Detectable</td>
<td>Cord blood</td>
<td>>1 y</td>
<td>None</td>
</tr>
<tr>
<td>IciS-03</td>
<td>Undetectable</td>
<td>PBPC</td>
<td><1 y*</td>
<td>Acute</td>
</tr>
<tr>
<td>IciS-06</td>
<td>Undetectable</td>
<td>PBPC</td>
<td><1 y</td>
<td>Acute</td>
</tr>
<tr>
<td>IciS-17</td>
<td>Undetectable</td>
<td>PBPC</td>
<td>ND</td>
<td>None</td>
</tr>
<tr>
<td>IciS-27</td>
<td>Undetectable</td>
<td>PBPC</td>
<td><1 y</td>
<td>Chronic</td>
</tr>
<tr>
<td>IciS-28</td>
<td>Undetectable</td>
<td>PBPC</td>
<td><1 y*</td>
<td>Acute and Chronic</td>
</tr>
</tbody>
</table>

ND = not determined; PBPC = peripheral blood progenitor cells.

* Full donor chimera within a month.
Appendix Figure 3. Western blot analysis from the 6 analyzed patients.

Gray arrows indicate bands left or reduced intensity in each case.
Appendix Figure 4. Activation profiles of CD4\(^+\) T cells from each mouse infused with human cells from each of the studied patients.

Activation is measured as expression of HLA-DR, CD25, and CD69 together.